Strategies for Image-guided Proton Therapy of Cancer
نویسنده
چکیده
During the past half century, an ongoing technological revolution in cancer imaging and radiation treatment has taken us ever closer to the goal of treating localized tumors without harming normal tissues. In his visionary 1946 paper, Harvard physicist Robert Wilson suggested that energetic protons could provide a nearly ideal form of radiotherapy. What makes protons the preferred particle type for radiotherapy is their inverted dose profile, called the Bragg peak, in combination with the ability to place the Bragg peak at any depth in the patient, to spread out the peak to cover larger volumes, and to have zero dose behind the most distal peak position. In 1989, Dr Wilson visited the first clinical proton-treatment center at Loma Linda University Medical Center in California, which was about to begin its clinical operation (the first patient was treated in October 1990). The reasons more than 40 years elapsed between his original idea to its full technical and practical realization were manifold, but the lack of adequate image guidance, both in treatment planning and treatment itself, played a key role. Computed tomography (CT) utilizing kilovolt (kV) X-rays was not developed until the early 1970s. For the first time this imaging modality provided three-dimensional (3-D) information about tumor location and at the same time about the electron density distribution required to perform 3-D dose calculations. Therefore, it was a natural choice to develop CT-based radiation treatment planning. Magnetic resonance imaging (MRI) entered the treatment planning scene about 10 years later and provided further details with respect to the geographical relationship between tumor and normal tissues, providing much higher spatial and contrast resolution than X-ray CT. It took another 15 years before positron emission tomography (PET), in particular its combination with X-ray CT, became available for radiation treatment planning and added another dimension to the ability to see tumors and to distinguish them from normal tissue, namely based on differential metabolism. For conformal radiation modalities, such as proton therapy, imaging technology is equally important in guiding the delivery of radiation therapy. Image-guided radiation therapy (IGRT), respiratory gating, and related technological advancements are about to enter the treatment room in many radiotherapy facilities. The idea behind this is that modern imaging can help not only to detect and outline tumors during treatment planning, but also to ensure that the dose delivered to the tumor in the treatment room is accurate and precise. Current Role of Image Guidance in Proton Treatment Planning
منابع مشابه
The Impact of Residual Geometric Inaccuracies on Normal Organ Doses in Image Guided-Radiation Therapy of Prostate Cancer Using On-Board Kilovoltage Cone-Beam Computed Tomography
Introduction: The aim of this retrospective study was to evaluate the variations in delivered dose to the bladder, rectum, and femoral heads of prostate cancer patients during a course of treatment by image-guided radiation therapy (IGRT). Materials and Methods: Overall, 15 patients with prostate cancer were selected and. Each week, for each patient five consecutive cone beam computed tomograph...
متن کاملHealth technology assessment of image-guided radiotherapy (IGRT): A systematic review of current evidence
Background: Image-guided radiotherapy used multiple imaging during the radiation therapy course to improve the precision and accuracy of health care provider's treatment. Objectives: This study aims to assess the safety, effectiveness and economic aspects of image-guided radiation therapy for decision-making about this technology in Iran. Methods: In this study, the most important med...
متن کاملExploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent Brest tumors
Aim: Despite grate progress in treatments, breast cancer is still the most common invasive cancer and the most cause of cancer related death in women. Treatment could be improved and perhaps standardized if more reliable markers for tumour progression and poor prognosis could be developed. The aim of this study was to evaluate whether patient-based machine learning (ML) driven ...
متن کاملMonte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy
Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...
متن کاملنقش تکنولوژی در بهبود درمان سرطان
One major strategy, technology-driven improvement of treatment conformity in cancer treatment, including advanced image guidance, advanced charged particle therapy (CPT), and application of nanoparticles in hyperthermia, will enable further widening of the therapeutic window of cancer treatment in the era of precision medicine. The state of the art treatment in photon-therapy is advanced 3D...
متن کاملCalculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code
Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver. Materials and Methods: For si...
متن کامل